<u>Supplementary Fig. 1.</u> Insertion of HA and Myc tags did not affect MMP-9 secretion. Effect of domain swapping, TIMP-1 co-precipitation, and specificity of peptides on MMP-9 induced cell migration. - *A)* Expression of wild type, HA- and Myc-tagged MMP-9 in COS-1 cells transfected with the cDNAs. The conditioned medium from COS-1 cells transfected with cDNAs was examined by gelatin zymography. - B) Expression of MMP-9 and HA- or Myc- tagged MMP-9 in COS-1 cells examined by Western blotting. The conditioned medium from transfected COS-1 cells was precipitated followed by Western blotting. - C) Insertion of HA or Myc tag in MMP-9 cDNA does not affect antibodies to precipitate MMP-9 chimera. The conditioned medium and cell lysate from COS-1 cells transfected with cDNAs as indicated were immunoprecipitated with anti-HA antibody (upper panel) and anti-Myc antibody (lower panel) followed by Western blotting using the same antibodies. - *D)* Mutant MMP-9, generated by swapping the PEX domain with that of MMP-2 (MMP-9/PEX_{MMP2}), expresses comparable levels of proteins with wild type MMP-9, as examined by Western blotting (upper panel) and by gelatin zymography (lower panel). - *E)* TIMP-1 co-precipitated with MMP-9 in both the lysate and the conditioned medium of transfected COS-1 cells examined by a co-immunoprecipitation assay. The conditioned medium and cell lysate were immunoprecipitated by anti-TIMP-1 antibody followed by anti-MMP-9 antibody for Western blotting. MMP-9 and a/b tubulin were used as controls for protein expression in the conditioned medium and cell lysate, respectively. - F) Specificity of IVS4 peptide on inhibition of MMP-9-induced cell migration. COS-1 cells transfected with MMP-9 or MT1-MMP cDNAs were pre-treated with IVS4 peptide and IVS4 scrambled peptide for 30 min followed by transwell migration assay. Each data point was performed in triplicate and the experiment was repeated three times (*P < 0.05). # Supplementary Fig. 2. Silencing of CD44 in COS-1 cells using a shRNA approach. - *A)* The outermost of blade I of the MMP-9 PEX domain interacts with CD44. COS-1 cells cotransfected with cDNAs as indicated were immunoprecipitated with anti-CD44 antibody followed by Western blotting using MMP-9 antibody. An aliquot of the conditioned medium was examined by Western blotting for MMP-9 to monitor expression level of MMP-9 in each transfection. - *B)* Silencing of CD44 in COS-1 cells by a shRNA approach. Expression of CD44 in COS-1 cells stably infected with retrovirus containing shRNA luciferase (a-c) or CD44 shRNA (d-f) was analyzed by immunofluorescence staining using anti-CD44 antibodies. Nuclei were counterstained with DAPI (blue). - C) Expression of CD44 in silenced COS-1 cells examined by flow cytometry. COS-1 cells expressing shRNAs for luciferase or CD44 were examined by flow cytometry using anti-CD44 antibody. ### Supplementary Fig. 3. CD44 activates EGFR to regulate MMP-9-enhanced cell migration. - *A)* COS-1 cells transfected with vector or MMP-9 cDNAs were pre-treated with 8 different inhibitors targeting distinct receptor tyrosine kinase pathways (AG1024, PD173074, PHA665752, Genistein, PP2, AG490, AG1478 or AG1296) for 30 min followed by a transwell migration assay. Each data point was performed in triplicate and the experiment was repeated three times (*P < 0.05). - B) Densitometric analysis of the ratio of phosphorylation of pERK, pAKT, pFAK and pEGFR to corresponding pan antibodies. #### Supplementary Fig. 4. Ratio of homodimer versus monomer of MMP-9 in COS-1 cells. A) Densitometric analysis of the percent homodimer and monomer in the conditioned media and cell lysates of MMP-9 transfected COS-1 cells examined by gelatin zymography (upper left - panel). MMP-9 transfected COS-1 cell lysates were further separated by ultracentrifugation showing membrane-bound and cytosolic MMP-9 (upper right panel). Densitometric analysis of monomer vs. dimer in each sample is shown in the chart. - *B)* Densitometric analysis of the percent of dimer and monomer in the conditioned media and cell lysates of MMP-9 in HT-1080 cells (left) and MDA-MB-435 (right) examined by gelatin zymography. Densitometric analysis of monomer vs. dimer in each sample is shown in the chart. - C) Recombinant proMMP-9 purified from COS-1 cells transfected with MMP-9 cDNA was subjected to FPLC gel filtration. The elution fractions from #38 to #70 (10 µl) were analyzed by gelatin zymography. Molecular weight marker proteins (200, 150 and 66 kDa) were used to calibrate the column for molecular mass. # Supplementary Figure 1 A B C D IP: TIMP-1 WB: MMP-9 Cell Lysate tubulin IP: TIMP-1 WB: MMP-9 Conditioned Media WB: MMP-9 # Supplementary Figure 2 Α В С ### Supplementary Figure 3 Α В | | Densitometry analysis (% of total) | |------------------------------------|------------------------------------| | CM MMP-9 homodimer (200 kDa) | 8.1% | | CM MMP-9 monomer (92 kDa) | 65.9% 100 % | | CL MMP-9 homodimer (200 kDa) | 7.5% | | CL MMP-9 monomer (92 kDa) | 18.5% | | Total homodimer CM + CL (200 kDa) | 15.6% | | Total monomer CM + CL (92 kDa) | 84.4% | | Membrane MMP-9 homodimer (200 kDa) | 27.4% _ | | · | | | Membrane MMP-9 monomer (92 kDa) | 35.9%
100 % | | Cytosolic homodimer (200 kDa) | 9.3% | | Cytosolic monomer (92 kDa) | 27.4% | | | Densitometry analysis (% of total) | |---|------------------------------------| | HT-1080 CM MMP-9 homodimer (200 kDa) | 20.7% | | HT-1080 CM MMP-9 monomer (92 kDa) | 79.3% | | HT-1080 CL MMP-9 homodimer (200 kDa) | 9.9% | | HT-1080 CL MMP-9 monomer (92 kDa) | 90.1% | | Total HT-1080 homodimer CM + CL (200 kDa) | 18.5% | | Total HT-1080 monomer CM + CL (92 kDa) | 81.5% | | | | | MDA-435 CM MMP-9 homodimer (200 kDa) | 13.9% | | MDA-435 CM MMP-9 monomer (92 kDa) | 86.1% | | MDA-435 CL MMP-9 homodimer (200 kDa) | 4.3% | | MDA-435 CL MMP-9 monomer (92 kDa) | 95.7% | | Total MDA-435 homodimer CM + CL (200 kDa) | 9.1% 100% | | Total MDA-435 monomer CM + CL (92 kDa) | 90.9% | С